Total Pages : 03

BCA/M-23 1866 MATHEMATICAL FOUNDATIONS-II BCA-123

Time : Three Hours]

Roll No.

[Maximum Marks : 80

Note : Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

(Compulsory Question)

- 1. (a) If p and q be any statement then construct the truth table ~ $(p \land q)$.
 - (b) Define subgroup.
 - (c) Define skew-symmetric matrix with example.
 - (d) Define prime ideal of a ring.
 - (e) State Cayley-Hamilton Theorem.
 - (f) Define Singular matrix.
 - (g) Define order of an element of a group.
 - (h) Construct a 2 × 2 matrix whose elements are given by $a_{ij} = i.j.$ $8 \times 2 = 16$

Unit I

- 2. (a) Prove that $[(p \Leftrightarrow q) \land (q \Rightarrow r) \land r] \Rightarrow r$ is a tautology.
- (b) Prove that $3^{2n+2} 8n 9$ is divisible by 64. 8 (3-52/6) L-1866

P.T.O.

- (a) Prove that $3^n > 2^n$ by Principle of $M_{ath_{e_1}}$ 3. Induction for all $n \in \mathbb{N}$.
 - (b) Show that :

$$\sim (p \leftrightarrow q \equiv (\sim p) \leftrightarrow q \equiv p \leftrightarrow (\sim q).$$

Unit II

- 4. (a) Let $G = \{0, 1, 2, 3, 4\}$, find the order of elements of the group G under the binary opera addition modulo 5.
 - (b) If every element of a group is its own inverse, show that the group is abelian.
- Prove that intersection of the two subring is a rin 5. (a)
 - (b) Let R be a ring of 2×2 matrices over integers. Let $S = \begin{cases} a & 0 \\ b & 0 \end{cases} : a, b \text{ integers} \end{cases}, \text{ then S is a left idea}$ but not right ideal.

Unit III

(a) Find rank of the Matrix $\begin{bmatrix} 9 & 0 & 2 & 3 \\ 0 & 1 & 5 & 6 \\ 4 & 5 & 3 & 0 \end{bmatrix}$ by 6. reducing it to Normal Form.

L-1866

(b) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, show that :
 $A^3 - 23A - 40I = 0.$
7. (a) Solve using rank method :
 $x + y + z = 0$
 $2x - 3y + z = 9$
 $x - y + z = 0.$
(b) Solve :
 $x - y + z = 0.$
 $x + 2y = z = 0$
 $2x + y + 3z = 0.$
Unit IV

8. Find eigen values and eigen vectors of the Matrix

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$$
. 16

) 9. Verify Cayley-Hamilton Theorem for the Matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}, \text{ and hence find its inverse.} \qquad 16$$

(3-52/7) L-1866

1

3,900

3